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A microscopic theory of the phonon-induced resistance oscillations in weak perpendicular magnetic fields is
presented. The calculations are based on the consideration of interaction of two-dimensional electrons with
three-dimensional �bulk� acoustic phonons and take into account anisotropy of the phonon spectrum in cubic
crystals. The magnetoresistance is calculated for �001�-grown GaAs quantum wells. The results are in agree-
ment with available experimental data. Apart from the numerical results, analytical expressions for the oscil-
lating part of magnetoresistance are obtained. These expressions are valid in the region of high-order magne-
tophonon resonances and describe the oscillating magnetoresistance determined by several groups of phonons
polarized along certain high-symmetry directions.
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I. INTRODUCTION

In recent years, experimental studies of transport proper-
ties of high-mobility two-dimensional �2D� electron gas in
weak perpendicular magnetic fields have uncovered a variety
of remarkable quantum phenomena caused by transitions of
electrons between different Landau levels. Such transitions
can lead to oscillations of dissipative resistance as a function
of the magnetic field. For example, under steady-state micro-
wave illumination of the 2D gas the resistance oscillates with
a period determined by the ratio of the radiation frequency to
the cyclotron frequency �c. This phenomenon is known as
the microwave-induced resistance oscillations �MIRO�.1 For
a sufficiently high radiation power the MIRO minima evolve
into the intervals of magnetic field where the dissipative re-
sistance vanishes.2,3 Next, it was found that an increase in the
electric current passing though the 2D layer substantially re-
duces the resistance4,5 and leads to oscillations of the resis-
tance as a function of either the magnetic field or the
current.4,6,7 Such oscillations are controlled by the ratio of a
characteristic energy, which is defined as the drop of the Hall
electric field across the classical cyclotron diameter, to the
cyclotron energy. This phenomenon has been called the Hall
field-induced resistance oscillations �HIRO�. It is also de-
scribed in terms of Zener tunneling between Landau levels.
Finally, in the systems with two occupied 2D subbands the
resistivity oscillates as a function of the ratio of subband
separation energy to the cyclotron energy owing to coupling
of the subbands via intersubband scattering. This phenom-
enon, called the magneto-intersubband oscillations �MISO�,
is important in the systems with small subband separation,
such as the double quantum wells.8,9 All these kinds of os-
cillations are insensitive to positions of the Landau levels
with respect to the Fermi energy. Therefore, unlike the
Shubnikov-de Haas oscillations, they are not damped expo-
nentially with increasing temperature.

The oscillatory phenomena described above require the
presence of microwave illumination, strong Hall field, or in-
tersubband coupling to enable resonant transitions between
different Landau levels via elastic scattering of electrons by

impurities or other static imperfections of the system. The
elastic scattering provides the main contribution to resistivity
at low temperatures. In high-mobility samples, however, in-
elastic scattering of electrons by acoustic phonons also con-
tributes to transport, and can exceed the impurity-scattering
contribution at the temperatures of several Kelvin. Therefore,
acoustic-phonon-assisted transitions of electrons between
Landau levels become important. Interestingly enough, these
transitions in 2D case possess a resonant property and, for
this reason, also lead to oscillations of the resistance. Oscil-
lations of this origin have been discovered recently.10 An
analysis of experimental data has suggested that the resistiv-
ity acquires an oscillating contribution whose periodicity is
determined by the resonant condition

2pFs = n��c, �1�

where pF is the Fermi momentum of electrons, s is the con-
stant of the order of sound velocity, and n is an integer.10

This phenomenon has been called the phonon-induced resis-
tance oscillations �PIRO�. Similar oscillations have been
observed later in the phonon drag thermal power
measurements.11

Since the quantity in the left-hand side of Eq. �1� is a
characteristic phonon energy, the PIRO can be viewed as
magnetophonon oscillations. For the case of electron scatter-
ing by optical phonons, the magnetophonon oscillations are
known for a long time12 and have been observed both in bulk
and 2D13 systems. The special feature of PIRO, in contrast to
the oscillations owing to scattering by optical phonons, is the
dependence of magnetophonon resonance on the electron
momentum. By emitting or absorbing acoustic phonons, the
electrons jump between the Landau levels, and the maximum
probability of such transitions is realized under electron
backscattering condition, when the phonon wave number q
reaches its maximum value 2pF /� in the 2D plane.
Initially,10 this resonant property of the electron-phonon scat-
tering was explained by involving the interface phonon
model. Later, by analyzing phonon-assisted transitions be-
tween Landau levels, it was found11 that the bulk phonon
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model gives similar results. It is worth noting that the maxi-
mum probability of the backscattering processes �q
=2pF /�� is not related to the presence of the magnetic field.
It reflects a fundamental property of the kinematics of two-
dimensional electron scattering by three-dimensional acous-
tic modes with frequency �q=s�q�

2 +qz
2, where q� and qz are

the in-plane and out-of-plane components of the phonon
wave vector. It can be shown that the scattering probability,
as a function of the phonon frequency, has a logarithmic
singularity at the point of transition from the region �q
�2pFs /�, when pure 2D scattering �qz=0� is possible, to the
region �q�2pFs /�, when emission of three-dimensional
phonons �with finite qz� becomes necessary.

The systematic studies of the PIRO are now under
way.14–17 However, current understanding of this phenom-
enon is far from complete. The characteristic phonon veloc-
ity s entering Eq. �1� varies in different experiments10,14,15,17

in the range from 2.9 to 5.9 km/s, and the origin of such
variations is not clear. The problem of the phase of the os-
cillations has not been discussed. The dependence of the am-
plitude of the oscillations on temperature and magnetic field
has not been investigated in detail, though general features of
the experimental dependence have been successfully
related17 to the behavior of the density of electron states in
magnetic field. The main difficulty for interpretation of the
experimental magnetoresistance is the complicated nature of
acoustic-phonon modes. Even in the case when the influence
of interfaces on the phonon spectrum is neglected �bulk pho-
non approximation�, one should take into account three dif-
ferent phonon branches characterized by anisotropic �i.e., de-
pendent on the direction of phonon momentum� velocities.

In this paper, the theory of PIRO is developed within the
bulk phonon approximation. Both deformation-potential and
piezoelectric mechanisms of electron-phonon interaction are
included into consideration. The anisotropy of phonon spec-
trum is taken into account. The calculations are carried out
for GaAs quantum well layers grown in the �001� crystallo-
graphic direction. Apart from the numerical results, approxi-
mate analytical expressions for the oscillating part of the
phonon-induced resistivity are presented. The results are
compared with available experimental data for two kinds of
GaAs layers with distinctly different densities and mobilities
of 2D electrons.

The paper is organized as follows. Section II contains
general description of the resistivity of 2D electrons interact-
ing with acoustic phonons in a weak magnetic field. Section
III includes both analytical and numerical results for the re-
sistivity, their comparison with experiment, and discussion.
The summary and conclusions are given in the last section.

II. GENERAL FORMALISM

Experimental investigations of phonon-induced resistance
oscillations are carried out at low temperatures T satisfying
the condition of degenerate electron gas, T��F, where �F is
the Fermi energy. Magnetic fields are weak enough to have
many Landau levels populated, ��c��F, so the electron
transport possesses some quasiclassical features �for ex-
ample, the electron momentum is still a good quantum num-
ber�. In the same time, the high quality of the samples en-
sures that the Landau quantization is not suppressed by
scattering at such low magnetic fields. This means that the
ratio of the cyclotron frequency �c to inverse quantum life-
time 1 /�q is not too small. Next, since in the high-mobility
samples the ratio of transport time to quantum lifetime is
large, the oscillations are observed in the regime of classi-
cally strong magnetic fields, when the cyclotron frequency is
much larger than the inverse transport time 1 /�tr. The in-
plane transport in this case can be viewed as hopping be-
tween cyclotron orbit centers, and the dissipative conductiv-
ity 	d is represented in the form

	d =
2e2

TL2�


�

f��
��1 − f��
����

��X
 − X
��
2/2, �2�

where 
 is the index of a quantum state of electron, X
 is the
coordinate of the cyclotron orbit center in the direction of
motion, f��� is the equilibrium Fermi-Dirac distribution
function, L2 is the normalization area, and � is the total scat-
tering rate, which is represented as a sum of impurity and
phonon scattering contributions: �

�=�

�

im +�

�
ph . Assuming

interaction of electrons with equilibrium phonons, the latter
contribution is written as

�

�
ph =

2�

�
�


� dq

�2��3C
q�	
�eiq·r�
�
�2��N
q + 1�
��
 − �
� − ��
q� + N
q
��
 − �
� + ��
q�� , �3�

where 
, q= �qx ,qy ,qz�, and �
q are the phonon mode index, wave vector, and frequency, respectively. Next, N
q
= �exp���
q /T�−1�−1 is the Planck distribution function. The interaction is described by the function C
q, which includes both
deformation-potential and piezoelectric coupling of electrons to crystal vibrations. Considering only acoustic modes in cubic
crystals, the general form of this function is written as follows:

C
q =
�

2��
q
�D2�

ij

e
qie
qjqiqj +
�eh14�2

q4 �
ijk,i�j�k�

�ijk�i�j�k�e
qke
qk�qiqjqi�qj�� , �4�
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where D is the deformation potential constant, h14 is the
piezoelectric coupling constant, and � is the material density.
The sums are taken over Cartesian coordinate indices, e
qi
are the components of the unit vector of the mode polariza-
tion, and the coefficient �ijk is equal to unity if all the indices
i , j ,k are different and equal to zero otherwise. The polariza-
tion vectors and the corresponding phonon mode frequencies
are found from the eigenstate problem

�
j

�Kij�q� − 
ij��2�e
qj = 0. �5�

The dynamical matrix for cubic crystals,

Kij�q� = ��c11 − c44�qi
2 + c44q

2�
ij + �c12 + c44�qiqj�1 − 
ij� ,

�6�

is written in the elastic approximation and expressed through
three elastic constants for which the conventional notations
are used. Equation �5� has three solutions describing a high-
energy mode �LA�, which becomes purely longitudinal for
high-symmetry directions ��100�, �110�, and �111��, and two
low-energy modes �TA� which become purely transverse for
these directions. Very often, theoretical studies of transport
properties of electrons in solids with cubic lattice symmetry
are based on the continuum approximation for elastic vibra-
tions, when c44= �c11−c12� /2 and the phonon spectrum is
given by three isotropic branches including one longitudinal
mode and two degenerate transverse modes. Whereas this
approach gives a reasonably good description of phonon-
limited mobilities and applies for calculation of many kinetic
coefficients, is not sufficient for description of phonon-
induced resistance oscillations in magnetic field, because the
anisotropy of the acoustic phonon branches is not weak in
most semiconductors and becomes essential in evaluation of
resonant scattering between Landau levels.

The quantum states 
 in Eq. �2� can be treated as exact
eigenstates of electrons interacting with randomly distributed
impurities in the presence of a magnetic field. It is conve-
nient to rewrite Eq. �2� through the Green’s functions of
electrons. Using the basis of Landau eigenstates and speci-
fying the growth axis of the quantum-well layer as z �i.e., the
�001� crystallographic direction�, one obtains the phonon-
induced contribution to the conductivity:

	d
ph =

e2lB
2

2��T
�

0

�

dq�q�
3 �

0

� dqz

�
�	0�eiqzz�0
�2

� �
0

2� d�

2�
�



C
q�N
q + 1��
nn�

�nn��q�
2 lB

2 /2�

�� d�f����1 − f�� − ��
q��A��n��A�−��
q
�n� ,

�7�

where q� and � are the absolute value and polar angle of the
in-plane component of phonon wave vector, n are the Landau
level numbers, and lB is the magnetic length. The function

�nn��x�= �n ! /n�!�xn�−ne−x�Ln
n�−n�x��2, where Ln

m�x� are the
Laguerre polynomials, describes scattering in the magnetic

field. The squared matrix element of a plane-wave factor,
�	0�eiqzz�0
�2, is determined by the confinement potential
which defines the ground state of 2D electrons, �0
. Applying
the model of a deep rectangular quantum well of width dw,
one can rewrite this squared matrix element as I�qzdw /2�,
where I�x�= �sin x /x�2�1− �x /��2�−2. Finally, the spectral
function A��n�, which is equal to the imaginary part of the
single-electron �advanced� Green’s function divided by �,
characterizes disorder-induced broadening of electron states.
In the Born approximation, this broadening is conveniently
described in terms of the quantum lifetime of electron, �q. In
the absence of impurities �the collisionless limit� A��n� is
reduced to the delta function 
��−�n�, where �n=��c�n
+1 /2� is the Landau quantization energy.

The dissipative resistivity measured in experiments using
Hall bars is related to the conductivity 	d according to �d

	d /	H

2 , where 	H=e2ns /m�c is the classical Hall conduc-
tivity and ns is the sheet carrier density. The resistivity is
represented as a sum of contributions from electron-impurity
and electron-phonon scattering:

�d = �im + �ph, �im =
m�im

e2ns
, �ph =

m�ph

e2ns
, �8�

where �im and �ph are the partial scattering rates which de-
pend on the magnetic field. Both �ph and �ph are straightfor-
wardly obtained from 	d

ph of Eq. �7�. If the magnetic field is
zero, �im and �ph are reduced to the inverse transport times
due to electron-impurity and electron-phonon interactions,
respectively, and Eq. �8� describes the classical �Drude� re-
sistivity.

Let us consider the case of weak magnetic fields, when
many Landau levels are occupied. Then one can use small-
ness of the cyclotron energy ��c, phonon energy ��
q,
disorder-broadening energy � /�q, and temperature T with re-
spect to the Fermi energy for evaluation of the expression
�7�. Owing to the sharp form of the spectral functions, the
contribution into the n-sums in Eq. �7� comes from a limited
number of Landau levels in the vicinity of the Fermi energy,
and these sums can be approximately calculated with the
following result:

�ph =
2m

�3T
�

0

2� d�

2�
�

0

2� d�

2�
�1 − cos ��

� �
0

� dqz

�
I�qzdw

2
��




C
q�N
q + 1�

�� d�f����1 − f�� − ��
q��D���D�� − ��
q� , �9�

where D��� is the dimensionless �i.e., normalized to its zero
magnetic field value� density of electron states. The integra-
tion over the in-plane phonon wave number q� is replaced in
Eq. �9� with the integration over the scattering angle � ac-
cording to q�=2�pF /��sin�� /2�. This emphasizes that the
phonon-assisted transport at large filling factors is described
within the picture of quasielastic scattering of 2D electrons
in the vicinity of the Fermi surface. Under the same assump-
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tions, the contribution to the resistivity owing to electron-
impurity scattering is given by

�im =
1

�tr
im� d��−

� f���
��

�D2��� , �10�

where �tr
im is the transport time for electron-impurity

scattering. It is defined according to 1 /�tr
im

= �m /2��3��0
2�d� w�2pF sin�

2 ��1−cos ��, where w is the
Fourier transform of the random impurity-potential cor-
relator. The self-consistent Born approximation leads to the
density of states in the form of an expansion in oscillation
harmonics weighted with powers of the Dingle factor d
�exp�−� /�c�q� �Refs. 18 and 19�:

D��� = 1 + 2�
k=1

�

ak cos
2�k�

��c
,

ak = �− 1�kk−1 exp�− �k/�c�q�Lk−1
1 �2�k/�c�q� . �11�

If the magnetic fields is weak, the Dingle factor is small.
This corresponds to the case of overlapping Landau levels,
when the density of states is given by a single-harmonic
expression, D���=1−2d cos�2�� /��c�. In strong enough
magnetic fields the electron system is in the regime of sepa-
rated Landau levels, when D��� is represented by a periodic
sequence of semielliptic peaks centered at the Landau quan-
tization energies �n.

The expressions �8�–�11�, together with Eqs. �4�–�6� de-
fining the phonon spectrum �
q and the function C
q, give a
complete description of the phonon-assisted 2D magne-
totransport at large filling factors. The next step in evaluation
of the resistivity can be done by calculating the integral over
the energy �. In this procedure, it is reasonable to omit the
terms containing oscillating functions of energy under the
integral. Such terms are responsible for the Shubnikov-de
Haas oscillations, and they are exponentially suppressed with
increasing temperature. Thus, the approximation used below
corresponds to the condition

2�2T/��c

sinh�2�2T/��c�
� 1, �12�

which means that the temperature should not be too low. As
a result,

�ph = �
0

2� d�

2�
�

0

2� d�

2�
�1 − cos ��

� �
0

� duz

�
I� pFdw

�
uz��




�
qF���
q

2T
�

��1 + 2�
k=1

�

ak
2 cos

2�k�
q

�c
� � �ph

�0� + 2�
k=1

�

ak
2�ph

�k�,

�13�

where F�x�= �x /sinh�x��2 and uz=�qz /2pF. The quantity

�
q =
4mTpFC
q

�5�
q
�14�

is an anisotropic scattering rate introduced for convenience
purpose. The corresponding result for the impurity-assisted
magnetotransport has a simpler form, �im= �1+2�k=1

� ak
2� /�tr

im,
which describes a positive magnetoresistance owing to Lan-
dau quantization.18 The Fermi momentum entering Eqs. �13�
and �14� is related to electron density according to pF

=��2�ns.

III. RESULTS AND DISCUSSION

The expression �13� is the central part of this paper. The
first term of this expression, �ph

�0�, is responsible for phonon-
induced contribution to background resistivity, while the sec-
ond one corresponds to oscillations of the resistivity as a
function of the magnetic field. These oscillations �PIRO� are
described in Eq. �13� through a sum of oscillatory harmonics
of the scattering rate, �ph

�k�. Because of the complicated form
of phonon spectrum, the integrals in Eq. �13� cannot be cal-
culated analytically in the general case. However, an analyti-
cal consideration is possible for the oscillating part of �ph,
since this part contains rapidly varying functions of �
q un-
der the integral. To carry out the approximate integration, it
is convenient to represent expressions for oscillatory har-
monics by using the spherical coordinate system according
to sin�� /2�=u sin �, uz=u cos �, where u=�q /2pF is the ab-
solute value of phonon wave vector in the dimensionless
form and � is the inclination angle. In these variables, the
phonon spectrum is conveniently written as �
q=s��

�
�q,
where s��

�
� is the anisotropic sound velocity for the mode 
.
The angles � and � determine the direction of the phonon
wave vector. As a result,

�ph
�k� =

2

�2�


�

0

2� d�

2�
�

0

�

d��
0

�sin ��−1

du

�
u3 sin2 �

�1 − u2 sin2 �
I� pFdw

�
u cos ��F� pFs��

�
�u

T
�

� ����
DA�
� + u−2���

PA�
��cos
4�kpFs��

�
�u

��c
, �15�

where �
q given by Eq. �14� is written as the expression in
the square brackets; the deformation-potential �DA� and pi-
ezoelectric �PA� contributions are separated according to Eq.
�4�. The main contribution to the integral over u comes from
the region u
�sin ��−1, and the convergence of this integral
is determined by the rapidly oscillating cosine function. The
other u-dependent functions, I and F, are slowly varying on
the scale of convergence because of pFdw /��1 and because
of condition �12�, respectively. After integrating over u, one
obtains
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�ph
�k� =

1

�2�


�

0

2� d�

2�
�

0

�

d�

���c sin �

2kpFs��
�
� I� pFdw

�
cot ��F� pFs��

�
�

T sin �
�

� ����
DA�
�/sin2 � + ���

PA�
��cos�4�kpFs��
�
�

��c sin �
−

�

4
� .

�16�

The remaining double integral over angular variables can be
calculated using the method of fastest descent. Indeed, under
the integral we have a rapidly oscillating function �the argu-
ment of the cosine in Eq. �16� is assumed to be large�, and
the main contribution comes from certain regions of � and �
where ���

�
��s��
�
� /sin � varies most slowly. Naturally, these

regions are in the close vicinity of the extrema points of the
function ���

�
�. The anisotropic sound velocity s��
�
� itself has a

number of local maxima, minima, and saddle points, whose
positions coincide with some high-symmetry directions in
the reciprocal �momentum� space. The number of extrema
for ���

�
� is smaller because of the factor 1 /sin �. For the
mode with the highest velocity �this mode becomes purely
longitudinal for high-symmetry directions� the anisotropy is
not strong, and all the extrema are only at �=� /2 �zero qz�.
The slow modes �which become purely transverse for high-
symmetry directions� also have extrema at �=� /2. Since the
anisotropy of these modes is stronger, they also may have
additional groups of extrema at �=� /2��, where ��� /4.
Nevertheless, the main contribution of slow �low energy�
modes to oscillating magnetoresistance is associated with the
extremum �=� /2 for a single mode whose velocity at �
=� /2 is independent of the polar angle �. This mode at �
=� /2 is purely transverse and polarized perpendicular to the
quantum well plane �direction �001��.

In summary, the analysis shows that the modes effectively
contributing to the oscillating part of resistivity are: �i� the
transverse mode polarized along �001�, whose velocity sT0
=�c44 /� is independent of � and corresponds to a maximum
of ���

�
� as a function of �; �ii� the longitudinal mode with
velocity sL0=�c11 /� polarized along �100� or along equiva-

lent directions ��010�, �1̄00�, and �01̄0�� corresponding to
local minima of ���

�
�; �iii� the longitudinal mode with veloc-

ity sL1=��c11+c12+2c44� /2� polarized along �110� or along

equivalent directions ��11̄0�, �1̄10�, and �1̄1̄0�� correspond-
ing to saddle points of ���

�
�. Accordingly, the oscillatory har-
monics of the scattering rate are written as sums of three
components:

�ph
�k� = �T0

�k� + �L0
�k� + �L1

�k�, �17�

where

�T0
�k� =

�eh14�2mT�c

8�2�kbT0�sT0
3 pF

2 F� pFsT0

T
�sin

4�kpFsT0

��c
, �18�

�L0
�k� =

�2D2mT�c
3/2

�3�5/2k3/2bL0�sL0
7/2pF

1/2F� pFsL0

T
�cos�4�kpFsL0

��c
+

�

4
� ,

�19�

�L1
�k� =

�2D2mT�c
3/2

�3�5/2k3/2bL1�sL1
7/2pF

1/2F� pFsL1

T
�cos�4�kpFsL1

��c
−

�

4
� .

�20�

The coefficients of order unity standing in the denominators
of these expressions are given by

bT0
2 = − 1 +

�c11 + c44 + 2c12�cA

c44�c11 + c12�
, �21�

bL0
2 = �1 + ���, � =

�c11 + c12�cA

c11�c11 − c44�
, �22�

and

bL1
2 = �1 + �1��2,

�1 =
�3c12 + 2c44 + c11�cA

�c11 + c12 + 2c44��c11 + c12�
,

�2 =
�c11 + c12�cA

�c11 + c12 + 2c44��c44 + c12�
, �23�

where cA=2c44+c12−c11 is the positive quantity characteriz-
ing the anisotropy of phonon spectrum. The contribution
from transverse phonons is associated with piezoelectric po-
tential, while the contribution from longitudinal phonons is
due to deformation potential of electron-phonon interaction.

The accuracy of the analytical approach leading to Eqs.
�17�–�20� is not expected to be high for lowest-order PIRO
peaks. Nevertheless, the applicability of these equations is
steadily improved as one moves to lower magnetic fields and
the argument of the oscillating function becomes larger. For
such low fields, the rate �T0

�k� tends to overcome the rates �L0
�k�

and �L1
�k�. However, in the samples with higher electron den-

sity, where the characteristic phonon wave number 2pF /� is
larger, the deformation-potential mechanism is more signifi-
cant than the piezoelectric one. Therefore, both transverse-
phonon and longitudinal-phonon contributions are important
and should be taken into account. Notice also that for weak
magnetic fields corresponding to the case of overlapping
Landau levels one can take only the lowest harmonic k=1 in
the sum in Eq. �13�. This reduces the oscillating part of
phonon-induced transport rate �ph to a simpler form 2d2�ph

�1�.
For completeness, one can also present the result obtained

in the isotropic approximation, where there are a longitudinal
mode and two degenerate transverse modes with velocities sl
and st, respectively:
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�ph
�k� =

�eh14�2mT�c

8�2�k�st
3pF

2 F� pFst

T
�cos

4�kpFst

��c

+
D2mT�c

�2�3k�sl
3F� pFsl

T
�cos

4�kpFsl

��c
. �24�

In this approximation, the phase of the oscillations, as well
as the dependence on magnetic field and Fermi momentum is
different from the case of anisotropic phonon spectrum.

The numerical calculations described below use the fol-
lowing elastic constants for GaAs �in units 1011 dyn /cm2�:
c11=12.17−0.00144 T �K�, c12=5.46−0.00064 T �K�, and
c44=6.16−0.0007 T �K�, taken from a semiconductor mate-
rial database.20 The temperature dependence of these con-
stants is not really essential in the range of T corresponding
to experimental studies of oscillating magnetoresistance. The
other GaAs parameters used are D=7.17 eV, h14
=1.2 V /nm, and �=5.317 g /cm3. An example of the results
of numerical calculations according to Eq. �13� is presented
in Fig. 1. The calculation employs the following parameters
of the high-mobility quantum well studied in Ref. 17: ns
=3.75�1011 cm−2, dw=30 nm, impurity-limited mobility
1.17�107 cm2 /V s, and quantum lifetime owing to impu-
rity scattering �q=15 ps. The theoretical plots are in agree-
ment with experimental data of Ref. 17 as concerns the back-
ground resistance, PIRO peak positions, and the amplitude of
the oscillations �for example, at T=4 K the amplitudes of
the peaks numbered 1 and 2 are 0.16 and 0.075 Ohm per
square, respectively�. The calculation shows that the phonon-
induced resistivity is determined by both longitudinal and
transverse modes, whose contributions are nearly equal to
each other at the fields B�0.1 T and at 6 K. At lower fields
the transverse-mode contribution becomes more important.
With decreasing temperature both contributions are sup-
pressed according to the factor TF���
q /2T�. The LA-mode

contribution is suppressed stronger because the thermal acti-
vation energy for this mode is larger. Figure 1 shows that the
peak placed slightly below 0.6 T is the lowest-order one for
the LA-mode contribution, so the origin of this peak �dis-
cussed in Ref. 17� seems to be clear. However, the relative
amplitude of this peak is higher than that observed in the
experiment, which is possibly related to overestimation of
the deformation-potential interaction in comparison to the
piezoelectric one.21 The other low-order peaks �n=1,2 ,3�
are formed by both transverse-mode and longitudinal-mode
contributions, so their positions Bn are not expected to follow
exactly a 1 /B-periodic dependence. Nevertheless, the devia-
tions appear to be small, and a 9-point linear fit of theoretical
peak positions �see Fig. 2� gives the dependence n
=2pFs /��c−
n, where s
3.44 km /s is very close both to
the velocity sT0
3.40 km /s and to the velocity found
experimentally,17 while 
n
0.21 is slightly larger than that
obtained from the experiment.17 The parameter 
n deter-
mines the phase of the magnetoresistance oscillations, which
appears to be close to the phase of the oscillating factor in
the approximate analytical expression �18�, 
n=1 /4. Starting
from T=3 K, the theoretical dependence has a weak extra
peak �marked by the arrow in Fig. 1� at B
0.15 T, which
comes from the longitudinal-mode contribution. Though the
experimental magnetoresistance17 does not show a peak in
this region, a precursor of such a feature is apparently visible
as a flattening of the minimum between the peaks n=2 and
n=3 at the temperatures above 4 K.

It is important to compare the results of numerical calcu-
lation of the oscillating component of phonon-induced mag-
netoresistance with the results obtained from the analytical
approach leading to Eqs. �17�–�20�. Figure 3�a� shows the
partial contribution of high-energy phonon mode �LA� cal-
culated according to Eq. �13� together with the correspond-

FIG. 1. �Color online� Phonon-induced resistivity calculated for
the quantum well of experiment Ref. 17 at temperatures from 2 to 6
K. For T=6 K, the partial oscillating contributions from high-
energy branch �LA� and low-energy branches �TA� are also shown
�shifted for clarity�.

FIG. 2. �Color online� Peak number n as a function of inverse
peak position 1 /Bn extracted from the calculated magnetoresistance
�Fig. 1� at 4 K. A linear fit for this dependence yields s

3.44 km /s. The same kind of plot based on the experimental data
is given in Ref. 17. The positions of low-order peaks slightly devi-
ate from the linear dependence because these peaks are formed by
mixture of the oscillating contributions from different phonon
modes.
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ing contribution based on the expression �ph
�k�=�L0

�k�+�L1
�k�,

where �L0
�k� and �L1

�k� are given by Eqs. �19� and �20�. In a
similar way, Fig. 3�b� shows both numerical and analytical,
based on Eq. �18�, results for low-energy phonon modes
�TA�. The agreement between exact and approximate results
becomes good in the low-field region corresponding to high-
order magnetophonon resonances. Both numerical and ap-
proximate results in Fig. 3�a� demonstrate a beating pattern
with a node at B
0.08 T. The analytical consideration re-
veals the origin of this beating, since it shows that the oscil-
lations induced by LA phonons are formed as a sum of two
contributions, �L0

�k� and �L1
�k�, with slightly different frequen-

cies.
Figure 4 presents the phonon-induced magnetoresistance

calculated for the GaAs quantum wells with ns=1012 cm−2

and dw=13 nm studied in Ref. 14. Since the mobility of
these samples �
6.6�105 cm2 /V s at T=4.2 K according
to the resistance at B=0� is much lower than that in Ref. 17,
both experimental14 and theoretical magnetoresistance show
a few low-order oscillations. Because of large density and,

consequently, large Fermi momentum in these samples, the
main contribution to oscillating resistivity is caused by the
deformation-potential interaction and comes from LA
phonons. This is demonstrated by plotting partial contribu-
tions of different modes in Fig. 4. At the temperatures 15–25
K all acoustic-phonon modes are fully activated, which
means that the function F���
q /2T� is close to 1, so the
resistivity should linearly increase with temperature. Experi-
mental plots of Ref. 14 indeed show a linear increase for the
background resistivity, while the amplitudes of the oscilla-
tion peaks depend on T in a different way: the first peak is
weakly modified by T and the second peak is suppressed
with increasing T. Such a behavior can be explained by a
decrease in the quantum lifetime with increasing temperature
owing to inelastic electron-electron scattering �see Ref. 17
and references therein�. In the present formalism, this effect
is described by adding the electron-electron scattering rate
1 /�q

ee=
T2 /��F, where 
�1, to the inverse quantum
lifetime22 1 /�q entering the density of states in Eq. �11�. The
result of the calculations improved in this way is also shown
in Fig. 4. A reasonably good agreement with experimental
data, as concerns the amplitudes of the oscillations and their
temperature dependence, is achieved at 
=2.

The positions of the calculated magnetoresistance peaks
deviate from the experimental data, though this deviation is
not strong. The fitting procedure similar to that shown in Fig.
2 gives the characteristic velocity s=5.1 km /s, which is
smaller than s=5.9 km /s determined in Ref. 14. It is worth
noting, however, that the positions of the peaks in the experi-
ment Ref. 14 are shifted to higher magnetic fields as the
temperature increases. Though the reason of this shift is not
clear, it signifies an increase in experimental velocity s with

FIG. 3. �Color online� Partial oscillating contributions of the
phonon-induced resistivity for the quantum well of experiment Ref.
17 at T=4 K. �a� Contribution of high-energy branch �LA�. Thick
�black� lines correspond to numerical calculation of �ph

�k� using Eq.
�13�, and thin �blue� lines are the results obtained from the approxi-
mate analytical expressions �19� and �20�. The inset shows beating
pattern in the low-field region. �b� Contribution of low-energy
branches �TA�. Thick �black� and thin �red� lines correspond to
numerical calculation using Eq. �13� and to approximate analytical
expression �18�, respectively. The low-field region is shown in the
inset.

FIG. 4. �Color online� Phonon-induced resistivity calculated for
the quantum well of experiment Ref. 14 at different temperatures.
For T=15 K, the partial oscillating contributions from high-energy
branch �LA� and low-energy branches �TA� are also shown �shifted
for clarity�. The additional �orange� plots take into account
temperature-induced decrease of the quantum lifetime and are in a
better agreement with experimental data of Ref. 14.
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temperature. Therefore, one may expect a better agreement
of theory and experiment at lower temperatures.

IV. SUMMARY AND CONCLUSIONS

This paper presents a microscopic theory of magne-
tophonon oscillations, also known as PIRO, in 2D electron
systems. The phonon-induced resistivity �ph is found by con-
sidering both deformation-potential and piezoelectric mecha-
nisms of interaction of 2D electrons with bulk acoustic pho-
non modes. In the experimentally relevant situation of weak
magnetic fields �large filling factors�, the expression for the
resistivity �or, equivalently, for the phonon-assisted transport
rate �ph� is determined by the electron-phonon coupling con-
stants, phonon frequencies, and the density of electron states
in magnetic field; see Eq. �13�. The essential feature of the
calculations is that the anisotropy of the phonon spectrum is
explicitly taken into account. The theory is applied to quan-
tum wells based on the materials of cubic symmetry and
grown in the �001� crystallographic direction. For this case,
an analytical expression for the oscillating part of the resis-
tivity has been derived. This expression is valid in the region
of fields corresponding to high-order magnetophonon reso-
nances, when the ratio of characteristic phonon frequency to
cyclotron frequency is large. The calculations are carried out
for GaAs quantum wells where PIRO have been observed
experimentally. This includes the cases of 2D electron gas
with high density and moderate mobility14 and with lower
density and very high mobility.17 The calculated magnetore-
sistance is in agreement with experimental data. As concerns
the positions of the magnetoresistance peaks, the agreement
is very good in the case of high-mobility systems.17

Based on the results obtained, one may conclude that the
bulk approximation for description of acoustic phonon
modes and of their interaction with 2D electrons works rea-
sonably good in application to magnetotransport in GaAs
quantum wells. Another important conclusion is that the ve-
locity s in the empirical Eq. �1� does not, in general, corre-
spond to a certain phonon mode. The reason for this is the
complicated structure of the phonon spectrum. There are
three anisotropic phonon modes �branches� with different ve-
locities and two mechanisms, deformation-potential and pi-
ezoelectric, of electron-phonon interaction. Relative contri-
butions of these modes and of the interaction mechanisms
depend on 2D electron density, temperature, and other pa-
rameters such as the width of the quantum well and growth
direction. This explains why the velocity s determined by
fitting the experimental PIRO peak positions is expected to
vary in different experiments, especially when such a fit is
based upon a few low-order peaks which have the highest
amplitudes and, therefore, are best visible experimentally.
Indeed, the low-order peaks are typically formed as a super-
position of contributions from different modes, and even for
each single mode there is a mixture of phonons with different
velocities owing to the anisotropy. The anisotropy influences
not only the frequency but also the phase and the amplitude
of the oscillations.

On the other hand, in the region of high-order magne-
tophonon resonances the resistance oscillations are described

by a fixed set of phonon velocities determined here for the
case of �001�-grown quantum wells; see Eqs. �17�–�20�. The
phases of these oscillations also become definite. Moreover,
if the density of 2D electrons is not large, so the
piezoelectric-potential interaction is significant, the main
contribution to magnetoresistance oscillations in �001�-
grown wells is characterized by a single velocity s=sT0
��c44 /� corresponding to a TA mode propagating in the
quantum well plane and polarized perpendicular to this
plane. This is the case of experiment Ref. 17, where many
magnetoresistance oscillations have been observed owing to
a very high-electron mobility. For the wells whose growth
axes are different from �001� the characteristic phonon ve-
locities have to be different. These cases are not studied here
in detail because PIRO have not yet been observed in such
wells. Nevertheless, based on the consideration presented in
Sec. III, the following general method for determination of
characteristic phonon velocities in the wells of arbitrary
growth axis is proposed. Take the surfaces of equal fre-
quency � defined for each mode in the q-space by the equa-
tion s��

�
�q=�. Find the points �numbered by the index i�
where these surfaces touch the surface of the cylinder of
radius 2pF /� and axis along the growth direction �this cylin-
drical surface is given by the equation q sin �=2pF /��. The
set of frequencies �=�
i �or, equivalently, velocities s
i
=�
i /q� corresponding to these points will give a set of os-
cillating harmonics with arguments 2�k�
i /�c in the mag-
netoresistance. An equivalent procedure is the search for ex-
trema of the function s��

�
� /sin �, as described in Sec. III. To
find which frequencies out of �
i give the main contribution
and to determine the phases and amplitudes of the oscilla-
tions, a detailed analysis is necessary. In the case of �001�-
grown wells a single TA mode gives the main contribution
�Eq. �18�� because the surface of equal frequency for this
particular mode touches the cylinder not just in a finite num-
ber of points, but along the whole circumference of the cyl-
inder at �=� /2.

To study the influence of different phonon modes on the
magnetoresistance oscillations, it is desirable to carry out
experiments in high-mobility 2D systems with densities var-
ied in the range 4–10�1011 cm−2. If it is possible to reach
high mobilities for the structures with growth axes different
from �001�, measurements of the oscillating magnetoresis-
tance in such systems would be also important for investiga-
tion of the phonon anisotropy effects discussed above. The
author hopes that the present theoretical work may stimulate
such experiments.

The consideration given in this paper assumes the linear
response regime, when both electron and phonon systems are
close to equilibrium. One may expect a more interesting and
rich behavior of the phonon-induced resistance oscillations
under nonlinear transport regime when the electric current
through the sample increases. Studies in this direction are
already undertaken.15,16 In addition to the work already done,
more efforts, both experimental and theoretical, are neces-
sary for better understanding of the mechanisms of phonon-
induced oscillations and their interplay with the other micro-
scopic mechanisms responsible for the magnetoresistance of
2D electrons at large filling factors.
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